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Abstract. The polarization observables for the elastic p-9Be scattering at 1GeV are calculated on the basis
of the multiple-diffraction scattering theory and the α-cluster model with dispersion. The 9Be nucleus is
considered as composed of two α-clusters and a neutron arranged at the vertices of an isosceles triangle.
The results obtained are in agreement with existing experimental data.

PACS. 24.10.Ht Optical and diffraction models – 25.45.-z 2H-induced reactions – 25.45.De Elastic and
inelastic scattering

1 Introduction

In the recent few years the interaction of intermediate-
energy protons with odd nuclei was intensively investi-
gated. Theoretical analysis of these processes is an impor-
tant test for studying scattering dynamics, nuclear struc-
ture and nucleon-nucleon (NN) interaction. Various ap-
proaches were used to describe intermediate-energy pro-
ton elastic scattering on spin- 12 polarized nuclei. In [1–5]
calculations based on relativistic and nonrelativistic dy-
namical models were published. In [1] the nonrelativistic
impulse approximation with density-dependent NN am-
plitude was used. In [2–5] calculations of p-13C scattering
were performed in the framework of the relativistic im-
pulse approximation and relativistic distorted-wave Born
approximation (DWBA). In these calculations the optical
potential has been obtained from fitting the p-12C scatter-
ing data, and then it was used for making DWBA predic-
tions for p-13C scattering. In [6] the solution of the p-13C
Lippmann-Schwinger equation was employed. In these pa-
pers quantitative agreement with experimental data was
obtained. A good agreement between the calculated and
measured observables was obtained in [3] by means of the
relativistic DWBA based on Dirac phenomenology.
In [7] the p-13C scattering was analyzed on the basis of

the multiple-diffraction scattering theory (MDST) and the
independent nucleon model. In these calculations, the NN
amplitude with parameters obtained from the phase-shift
analysis was used. The results of calculations of the dif-
ferential cross-section and analyzing power were in agree-
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ment with experimental data. Unfortunately, the authors
of this paper had no possibility to compare the results of
their calculations with experimentally measured observ-
ables for the p-13C scattering that appeared later. Such a
comparison shows, for example, that the behavior of the
analyzing powers for the recoil target nuclei calculated
in [7] is not correct.

One of the most intesively studied odd nuclei is the
9Be nucleus. To describe the observables in the elastic
p-9Be scattering, the optical model [8–10], macroscopic
DWIA [9–11] and the coupled channel approximation [9]
were used.

In many light nuclei the α-cluster structure is often
manifested. In [12] and [13] the 2αn model and MDST
with using three-particle wave functions of the 9Be nu-
cleus calculated in [14] were employed to describe the po-
larization observables in the elastic p-9Be scattering at
220 and 1000MeV. The results obtained in [12,13] are
in agreement with experimental data. In [12,13] the 9Be
ground-state wave function was presented as an expan-
sion in Gaussians, and the NN amplitude was taken as a
sum of the central and spin-orbital interactions. In [12,13]
differential cross-sections and analyzing powers were cal-
culated. However, the nuclear spin dynamics in the in-
teraction of two nonzero-spin nuclei is more variable and
intricate than that for scattering of protons on zero-spin
nuclei [15]. Therefore, to properly describe the interaction
of two nonzero-spin nuclei properly it is necessary to cal-
culate more than one polarization observable.

To describe the polarization observables in the elastic
scattering of intermediate-energy protons on even nuclei
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(12C, 16O, 20Ne), the α-cluster model with dispersion has
been proposed [16–18]. According to this model the carbon
and oxygen nuclei are considered as made up of three and
four α-clusters arranged at the vertices of an equilateral
triangle and a tetrahedron, respectively. These α-clusters
can be displaced from their most probable equilibrium po-
sitions. The 20Ne nucleus is considered as composed of the
deformed core (16O nucleus) and an additional α-cluster
situated with the highest probability inside the core, i.e.
oscillating around the most probable position of equilib-
rium in the center of mass of the core.
In this paper the α-cluster model with dispersion is

developed for the case of 9Be nuclei. In sect. 2 the model
used is described and in sect. 3 the calculations of the
p-9Be elastic-scattering observables are presented.

2 Three-particle density of the 9Be nucleus

The 9Be nucleus is one of the most investigated odd nuclei.
The three-particle wave functions of the 9Be nucleus in the
2αn model with different pair potentials were calculated,
for example, in [14]. The 9Be ground-state wave function
in [14] was presented as an expansion in Gaussians. In this
paper we also suppose the 2αn configuration for the 9Be
nucleus. We consider the 9Be nucleus as made up of two
α-clusters and a neutron arranged with the highest proba-
bility at the vertices of an isosceles triangle (boomerang).
In this approach the density of the 9Be nucleus can be
presented in the form

ρ(ξ,η) =

∫

d3ξ′d3η′ρ0(ξ
′,η′)Φ∆(ξ − ξ

′,η − η′), (1)

where the density ρ0(ξ,η) and the smearing function
Φ(ξ,η) are

ρ0(ξ,η) =
1

8π2d1d2
δ(ξ − d1)δ(η − d2)δ(ξη), (2)

Φ(ξ, η) =
1

(2π∆1∆2)3
exp

(

−
ξ2

2∆2
1

−
η2

2∆2
2

)

. (3)

In these formulae parameters d1, d2 and ∆1, ∆2 char-
acterize the distance between the α-clusters, the dis-
tance between the neutron and the center of mass of two
α-clusters and the probabilities of the α-clusters and neu-
tron displacement from their most probable positions at
the vertices of an isosceles triangle, respectively.
The coordinates of the α-clusters, r2, r3, and of the

neutron, r1, are related to the Jacobi coordinates ξ and η
through

r1 =
8

9
η, r2 = −

1

9
η +

1

2
ξ, r3 = −

1

9
η −

1

2
ξ . (4)

The density parameters d1, d2 and ∆1, ∆2 can be de-
termined from the comparison of the calculated and mea-
sured charge form factors of the 9Be nucleus. It is well
known that the charge form factor of the neutron is prac-
tically equal to zero. Therefore, we present the elastic-
scattering charge form factor of the 9Be nucleus in the
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Fig. 1. The 9Be form factor as a function of the momentum
transferred. The experimental data are from [19,20].

form

FBe(q)=Fα(q)

∫
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ρ(ξ,η)d3ξ d3η. (5)

In this formula the α-particle form factor Fα(q) has
the form

Fα(q) = exp

(

−
1

6
q2〈r2〉α

)

, (6)

where 〈r2〉
1/2
α = 1.61 fm is the root-mean-square radius of

the α-cluster, q is the transferred momentum.
Integrating (5), we have
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where j0(x) is the spherical Bessel function.
Figure 1 shows the calculated 9Be elastic-scattering

charge form factor together with the experimental data
taken from [19,20]. As can be seen from fig. 1, the cal-
culated and measured form factors are in agreement up
to the values of transferred momentum q ≤ 2 fm−1. The
distinctions between the calculated and measured charge
form factors in the region of the largest transferred mo-
menta are due to the fact that the quadrupole electrical
form factor should be used to describe the existing exper-
imental data.
From the comparison of the calculated and measured

form factors we have obtained the following values of the
9Be density parameters: d1 = 2.0 fm, ∆1 = 1.892 fm, d2 =
1.232 fm, ∆2 = 0.00012 fm.
The root-mean-square radius of the 9Be nucleus is de-

termined by

〈r2〉Be = 〈r
2〉α +

1

4
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4
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Fig. 2. Differential cross-section σ(θ), polarization P (θ), target analyzing power A000N(θ) and spin correlation parameter
A00NN(θ) of the elastic p-9Be scattering at 1GeV as functions of the scattering angle. Experimental data are from [26,27].

The obtained values of density parameters d1, d2 and
∆1, ∆2 for the

9Be nucleus yield the root-mean-square

radius 〈r2〉
1/2
Be = 2.509 fm, which is in agreement with the

experimentally measured value [21] 〈r2〉
1/2
Be exp = 2.519 fm.

3 Scattering of protons on 9Be nuclei

According to MDST, the p-9Be elastic-scattering ampli-
tude has the form

TBe(q) =
ik

2π

∫

d2bd3ξ d3ηeiqbρ(9Be)(ξ,η)Ω(b, rj), (9)

Ω(b, rj) = 1−

3
∏

j=1

[

1−
1

2πik

∫

d2qe−iq(b−rj)f̃(q)

]

, (10)

where b is the impact parameter, rj are the cluster co-
ordinates of the 9Be nucleus, k is the wave vector of the
incident proton, f̃(q) = fNN(q), fpα(q) are the “elemen-
tary” proton elastic-scattering amplitudes on the clusters
of the 9Be nucleus. Notice that in this approach we also
consider the neutron as a cluster.
In the general case, the NN amplitude fNN(q) is an

operator in the spin-isospin space. The amplitude fNN(q)
can be written in the most general form as

fNN(q)=f1(q)+qf2(q)(σ0n+σ1n)+f3(q)(σ0σ1)

+f4(q)(σ0q)(σ1q)+f5(q)(σ0p)(σ1p), (11)

where σ0 and σ1 are the spin operators of the inci-
dent proton and additional neutron of the target nucleus,
n = [k,k′]/|[k,k′]|, q = k− k′, p = (k+ k′)/(|k+ k′|), k
and k′ are the wave vectors of the incident and scattered
protons. The vectors n, p and −q form the right-hand
orthogonal coordinate system. Neglecting the isospin part
of the NN interaction we choose the amplitudes fi(q) in
the form

fi(q) = kHi exp(−γiq
2), 1 ≤ i ≤ 5. (12)

The numerical values of parameters Hi, γi obtained
from the solutions of the phase-shift analysis are presented
in [7].
The elementary proton-α amplitude can be chosen in

the form [17]

fpα(q) = k

2
∑

i=1

(

Gci exp(−βciq
2)

+qGsi exp(−βsiq
2)(σ0n)

)

. (13)

The parameters Gc1, βc1, Gs1 and βs1 are the fitting
ones, and the parameters Gc2, βc2, Gs1 and βs1 are related
with Gc1, βc1, Gs1 and βs1 through [17]

Gc2 =
3iG2

c1

32βc1
, βc2 =

1

2
βc1 , (14)

Gs2 =
3iGc1Gs1βc1
8(βc1 + βs1)2

, βs2 =
βc1βs1

βc1 + βs1
. (15)
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Fig. 3. Spin-rotation-depolarization parameters DLS(θ),
DSS(θ) and DNN(θ) of the elastic p-9Be scattering at 1GeV
as functions of the scattering angle.

The values of the parameters Gc1, βc1, Gs1 and βs1
obtained from the comparison of the calculated and mea-
sured [22] elastic p-4He scattering observables at 1GeV
are: Gc1 = 0.336+i1.277 (fm

2), βc1 = 0.435−i0.029 (fm
2),

Gs1 = 0.179+ i0.215 (fm
3) and βs1 = 0.476+ i0.013 (fm

2).
Substituting (11)–(14) into (10) and integrating (10)

over variables, we can present the amplitude TBe(q) in
the form

TBe(q) = A+ E(σ0n) + F (σ1n) +B(σ0n)(σ1n)

+C(σ0q)(σ1q) +D(σ0p)(σ1p) (16)

A complete description of the elastic proton scattering
on a zero-spin nucleus requires the measurement of three
independent observables as functions of the scattering an-
gle [23]. To describe the elastic scattering of two spin- 12
particles in the intermediate-energy region, it is necessary
to measure eleven independent observables [7]. The 9Be

nucleus in the ground state has the spin I = 3
2

−

. There-
fore, the number of independent observables that form the
complete set must essentially increase.
Unfortunately, at present the complete experimental

data concerning the elastic scattering of protons on odd
nuclei are absent. Relatively more complete experimental
data for these processes exist for the elastic p-13C scatter-
ing at 500MeV [3,24,25]. In these papers the measured
differential cross-section σ(θ) ≡ dσ

dΩ (mb/sr), polarization
(asymmetry) P (θ), spin-rotation-depolarization parame-
ters DLS(θ), DSS(θ), DNN(θ), target nucleus analyzing

power A000N(θ) and spin correlation A00NN(θ) are pre-
sented.
In this paper we have calculated only these seven ob-

servables. The definitions of these observables are given
in [23]. In the calculations we have used the p-α amplitude
parameters determined in the present paper and the pa-
rameters of nucleon-nucleon amplitude determined in [7]
at 800MeV. The results of calculations of the observables
for the 1GeV proton elastic scattering by 9Be nuclei along
with the experimental data from [26,27] are presented in
figs. 2, 3 (dashed curves). As can be seen from figs. 2, 3, the
calculated differential cross-section is in agreement with
the experimental data, and the analyzing power (polariza-
tion) is in quantitative agreement with the existing data.

4 Discussion

In the model proposed the 9Be nucleus is considered as an
isosceles triangle (boomerang) formed by two α-clusters
and an additional neutron. For this nucleus it is an unusual
enough configuration. However, it is well known that the
same configurations exist in molecules. For example, the
molecules of water (H2O) and ozone (O3) have the form
of a boomerang [28]. In [29] the structure of odd-even iso-
topes of Li and Be nuclei was studied systematically with
antisymmetrized molecular dynamics. It was shown that
clear evidence of an isosceles triangle strucrure is observed
in the density of 9Be nuclei. It is difficult to explain the
reasons why Nature chooses these configurations for sta-
ble states of some simple quantum systems. The results
obtained allow us to conclude that this configuration is
presented with a great probability in the wave function of
the 9Be nucleus.
As has been mentioned above, the polarization ob-

servables can give more information about the structure
of target nuclei and mechanisms of nuclear reactions as
compared with the total, reaction or even differential
cross-sections. For example, analyzing power (polariza-
tion) can be used to determine the imaginary part of
spin-orbital nucleon-nucleus amplitude [23]. To describe
the existing data (see the solid curves in figs. 2, 3) we
have changed the imaginary part of spin-orbital NN am-
plitude (from ImH2 = −4.51 (GeV/c)

−3 in [7] to ImH2 =
−10.51 (GeV/c)−3 in the present paper). As can be seen
from figs. 2, 3 (the solid curves), the behavior of the calcu-
lated observables for the elastic p-9Be scattering is similar
to that for the p-13C scattering. Moreover, the behavior
of the spin correlation parameters A00NN calculated with
and without changing the imaginary part of spin-orbital
NN amplitude differs significantly.
Therefore, we conclude that the assumption about the

model in which the 9Be nucleus is considered as made
up of two α-clusters and neutron arranged at the vertices
of isosceles triangle allows us to agree the calculated and
measured charge form factors up to the values of trans-
ferred momentum q ≤ 2 fm−1, root-mean-square radii
of the 9Be nucleus and observables in the elastic 1GeV
proton scattering on these nuclei. Experimental measure-
ments of the maximally possible number of independent
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observables in maximally wide angular range could serve
as a more critical verification of the models which describe
nucleon-nucleus interactions and it would provide more in-
formation about the nuclear structure and nature of the
nuclear forces.

The authors are indebted to V.V. Pilipenko for valuable dis-
cussions.
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